
Microservices and DevOps

DevOps and Container Technology
Agile Development – an Opiniated Guide

Henrik Bærbak Christensen



All seasoned developers...

• ... And I do not spend all my time developing, so...

• Who am I to teach you how to develop software?

• However, often I see this:

– I will just code these two SQL 

statements, add a table, aah – OK

I also introduce the table init seq;

wait, I have this code somewhere;

Yeah, I will just generalize, and

update all call sites, Hey – this 

must be a bug here...

CS@AU Henrik Bærbak Christensen 2



That is – take large steps

• When asked, people says

– It is much faster!

CS@AU Henrik Bærbak Christensen 3

Falling fifty times is not faster!



Take small steps...

• One of the four test-driven development principles:

– Take small steps

• Use the ladder, not the vaulting pole. – Henrik Bærbak

CS@AU Henrik Bærbak Christensen 4



Not Unknown Phenomenon

• Build support code to help you build strong code!

– Like taking the ladder/stairs – slow but steady, and you do not fall 

down and hurt yourself (too badly)!

CS@AU Henrik Bærbak Christensen 5

Scaffolding Code



The Code Perspective

Enough Metaphoric Speak

CS@AU Henrik Bærbak Christensen 6



A Developer’s Scaffolding

• DevOps relies on testing! Get used to it!

• ... And at all levels...

• Testing is scientific

process:

– Hypothesis

• Write test

– Experiment

• Execute

– Conclusion

• Pass/Fail

CS@AU Henrik Bærbak Christensen 7



From SkyCave

• Our present ‘monolith’ SkyCave architecture

• Starting from the Bottom:

The Storage layer...

CS@AU Henrik Bærbak Christensen 8

Presentation Layer / ‘cmd’

Application Layer / ‘daemon’

Storage Layer / Database



Make Tests!

• Hypothesis: Storage can Create and Read rooms

CS@AU Henrik Bærbak Christensen 9

TestRoomPlayerStorage



What??? You have no DB!

• I am a TDD guy

– Top-down approach

– Code the API before the

implementation!!!

• So I quickly add test

• See it fail, and then...

– I do not start a Microsoft SQL Server 2017 and start hacking SQL 

statements... Why? Because my tests would not be automatic!

CS@AU Henrik Bærbak Christensen 10



Unit Tests are Fast!

• Testing against a real DB is an Integration test. Requires 

a lot of setup to start a DB, wipe its contents, shut it down 

again. 

• It is to slow when you run your unit tests twice every 

minute!!! And you do, right?

• So I use Test doubles – replacements for the real 

depended-on-unit that acts like it but are fast, lightweight, 

and so easy to code that they contain no errors!

CS@AU Henrik Bærbak Christensen 11



Fake Object

CS@AU Henrik Bærbak Christensen 12

Use a HashMap or ? Or ? as 
DB table!



Meszaros

• Test doubles makes your software

testable, because they

– Break dependencies on ‘heavy objects’

• Databases, remote services, 

– Breaks dependency chains to isolate the

unit-under-test

CS@AU Henrik Bærbak Christensen 13



Testing at the Application Layer

• Hypothesis: PlayerServant can dig new rooms

– Fast development, as no setup is required

CS@AU Henrik Bærbak Christensen 14



Other Example

• SkyCave is a distributed client-server system...

• Hypothesis: PlayerProxy can dig new rooms

• Actually, it is the same test-

case!

– Refactored into a 

‘CommonPlayerTest’

CS@AU Henrik Bærbak Christensen 15



Fake Object IPC

• IPC purpose: Get data from client to server

– We can use a test double instead!

CS@AU Henrik Bærbak Christensen 16

LocalCRH



Testing at the Presentation Layer

• We can even move the testing to the UI layer now

– ”Automated System Testing”

CS@AU Henrik Bærbak Christensen 17



Compare...

• Comparing to a non-test-doubled architecture

– Start the database, wipe its contents, run the init script to fill in the 

default tables, update the server’s config file with the proper 

(ip,port) of the database, start the server, start the daemon, try to 

dig a new room to the north, validate that it worked ok, ...

• Large Aarhus based company war-story

– 1.000 hours of manual test before release...

CS@AU Henrik Bærbak Christensen 18



And that is not all...

• Remember the low level tests test at the storage level?

– Hypothesis: Storage can Create and Read rooms

– Reuse them for service tests using the real database!

CS@AU Henrik Bærbak Christensen 19



Cost Benefit Analysis

• Costs:

– I have to program to an interface

• To have two or more implementations of the CaveStorage

– I do have to develop and maintain the ‘FakeCaveStorage’

• 12-15 methods with a lot of hashMap manipulations (260 LOC)

– Dependency Injection is required

• To control which implementation of CaveStorage to use

• Benefits

– I am forced to program to an interface ☺

– I am forced to use dependency injection ☺

CS@AU Henrik Bærbak Christensen 20



Cost Benefit Analysis

• Benefits ...

– I have most of my code under fast test execution

– I can reuse my test cases to develop real-service code in the 

service tests

CS@AU Henrik Bærbak Christensen 21



The Ladder, not the Vaulting Pole

• Take small steps by

– Building test cases to ensure you do not fall

– External services/modules replaced by test doubles

• That are covered by test cases

– ... That you reuse for the real

interaction code...

CS@AU Henrik Bærbak Christensen 22


