/v

AARHUS UNIVERSITET

Microservices and DevOps

DevOps and Container Technology
Agile Development — an Opiniated Guide

Henrik Baerbak Christensen

/v All seasoned developers...

AARHUS UNIVERSITET
* ...And | do not spend all my time developing, so...

« Who am | to teach you how to develop software?

« However, often | see this:

— | will just code these two SQL
statements, add a table, aah — OK
| also introduce the table init seq;
wait, | have this code somewhere;
Yeah, | will just generalize, and
update all call sites, Hey — this l
must be a bug here...

v That is — take large steps

AARHUS UNIVERSITET

 When asked, people says
— It is much faster!

Falling fifty times is not faster!

CS@AU Henrik Baerbak Christensen 3

/v Take small steps...

AARHUS UNIVERSITET

« One of the four test-driven development principles:
— Take small steps

« Use the ladder, not the vaulting pole. — Henrik Baerbak

CS@AU Henrik Baerbak Christensen 4

eV Not Unknown Phenomenon

AARHUS UNIVERSITET

« Build support code to help you build strong code!

— Like taking the ladder/stairs — slow but steady, and you do not fall
down and hurt yourself (too badly)!

CS@AU Henrik Baerbak Christensen 5

/v

AARHUS UNIVERSITET

The Code Perspective

Enough Metaphoric Speak

CS@AU Henrik Baerbak Christensen

/v A Developer’s Scaffolding

AARHUS UNIVERSITET
* DevOps relies on testing! Get used to it!
 ...And at all levels...

Definition: Unit test

Unit testing is the process of executing a software unit in isolation in

¢ TeStI ng IS SCIentIfIC order to find defects in the unit itself.

process: - .
hesi Definition: Integration test
- HypOt €sSIS Integration testing is the process of executing a software unit in collabo-
o \Write test ration with other units in order to find defects in their interactions.
— Experiment

Definition: System test

* Execute System testing is the process of executing the whole software system in
. order to find deviations from the specified requirements.
— Conclusion

 Pass/Fall

/v From SkyCave

AARHUS UNIVERSITET
e Qur present ‘monolith’ SkyCave architecture

Presentation Layer / ‘cmd’

Application Layer / ‘daemon’

e Starting from the Bottom:
The Storage layer...

Storage Layer / Database

CS@AU Henrik Beerbak Christensen 8

eV Make Tests!

AARHUS UNIVERSITET
« Hypothesis: Storage can Create and Read rooms

@Test
public void shuuldﬁeadhnd[reateﬁuumlnﬁturage(] i
// validate retrieval of a room record from storage
RoomRecord room = storage.getRoom(pBee. getPuﬁltlunString{}};
assertThat(room.getDescription{), is{ value: "You are standing at the end of a road before a small brick building."));

pbed = new Point3(= -1, v 8, = B);
room = storage.getRoom(p@0e.getPositionString());
assertThat(room.getDescription(), containsString(substring "You have walked up a hill, still"});

// validate that rooms can be inserted in EII?"HL’JE
boolean canAdd = storage.addRoom({p273. getPuﬁltlunString{},

new RoomRecord(descripion: "You are in a dark lecturing hall.™, creatorMName: "Arne"));
assertThat({canAdd, is({ value: true));

room = storage.getRoom(p273.getPositionString());
assertThat(room.getDescription(), is(value: "You are in a dark lecturing hall."));
assertThat(room.getCreator(), is(value: "Arne"));

'y validate that existing rooms cannot be overridden

canAdd = storage.addRoom(p273.getPositionString(),
new RoomRecord(description: "This room must never be made", creatorMame: "BlackHat"));

assertThat(canAdd, is(value: false));
TestRoomPlayerStorage

}
CS@AU Henrik Baerbak Christensen 9

VeV What??? You have no DB!

AARHUS UNIVERSITET
— Top-down approach 1. Quickly add a test

Run all tests and see the new one fail

— Code the API before the
implementation!!!

Make a little change

B

e So| CIUICkly add test Run all tests and see them all succeed

idate ieval - - | 5. Refactor to remove duplication
RoomRecord room = storage.getRoom(pB8@.getPositionString());
assertThat(room.getDescription(), is(se: "You are standing 2

e See it fail, and then...

— | do not start a Microsoft SQL Server 2017 and start hacking SQL
statements... Why? Because my tests would not be automatic!

VeV Unit Tests are Fast!

AARHUS UNIVERSITET

« Testing against a real DB is an Integration test. Requires
a lot of setup to start a DB, wipe its contents, shut it down
again.

+ So | uselTestdoubles!- replacements for the real

depended-on-unit that acts like it but are fast, lightweight,
and so easy to code that they contain no errors!

CS@AU Henrik Beerbak Christensen 11

/v Fake Object

AARHUS UNIVERSITET

@Before

public void setUp() throws Exception
storage = new FakeCaveStorage()?
storage.initialize(objectManager null, confic null);

@0verride \
Qublic RoomRecord getRoom(String positionString) {
return roomMap.get(positionString);

b
@0verride
P) P) public boolean addRoom(String positionString, RoomRecord newRoom) {
Usea HaShMap or?Or?as /f 1f there is already a room, return false
DB tab|e| if (roomMap.containsKey(positionString)) { return false; }

// Simulate classic DB behaviour: timestamp record and
// assign unigue id

RoomRecord recordInDB = new RoomRecord(newRoom);
ZonedDateTime now = nowStrategy.now();

recordInDB. setCreationTimeStamp(now) ;

recordInDB. setId(UUID. randomUUID() . toString());

roomMap . put (positionString, recordInDB);
return true;

CS@AU Henrik Beerbak Christensen 12

/v Meszaros

AARHUS UNIVERSITET

« Test doubles makes your software
testable, because they

XUNIT TEST * o

— Break dependencies on ‘heavy objects’ PATTERNS
« Databases, remote services,
— Breaks dependency chains to isolate the s Meszs |
unit-under-test '
Test
Double
AN
A | | | I I
y Dummy Test Test Mock Fake
! _D_bj_ei:t_ J' Stub Spy Object Object

CS@AU Henrik Baerbak Christensen 13

/~ Testing at the Application Layer

AARHUS UNIVERSITET

« Hypothesis: PlayerServant can dig new rooms
Fast development, as no setup is required

:}uhli: static void shouldAllowPlayerToDigNewRooms(Player player) {
boolean valid = player.digRoom(Direction.DOWN, description: "Road Cellar™);
assertTrue(message: "It is allowed to dig room in down direction", wvalid);

valid = player.move(Direction.DOWN) ;
String roomDesc = player.getShortRoomDescription();
assertTrue(roomDesc.contains("Road Cellar"));

}
public static void shouldMNotAllowDigAtEast(Player player) {

boolean allowed = player.digRoom(Direction.EAST, description: "Santa's cave.");

assertFalse(message: "It should not be possible to dig east, as the well house is there.”, allowed);
¥

B0verride
puhllc boolean dlgRDDm{DlrEEtLGﬂ dlrEEtlDﬂ, Strlng description) {
/f Calculate the offsets in the given direction
Point3 p = Point3. parEESfrlng{p951t10n}
p.translate(direction);
RoomRe

returnjstorage. addRuum{p gEtPDSltlDﬂStrlﬂg{}f
}

=)

room) ;

CS@AU Henrik Baerbak Christensen 14

/v

AARHUS UNIVERSITET

Other Example

« SkyCave Is a distributed client-server system...
« Hypothesis: PlayerProxy can dig new rooms

publlc static void shouldAllowPlayerToDigNewRooms (Player player) {
boolean valld = player dlgRoom[Dlrectmn DOWN, description: "Road Cellar™);
assertTrue(message: "It is allowed to dig room in down direction", valid);

valid = player.move(Direction.DOWN);
String roomDesc = player.getShortRoomDescription();
assertTrue(roomDesc.contains ("Read Cellar"));

}
public static void shouldMotAllowDigAtEast(Player player) {
boolean allowed = player digRoom(Direction.EAST, description: "Santa's cave.”);
assertFalse(message: "It should not be possible to dig east, as the well house is there.”, allowed);

}

« Actually, it is the same test-
casel

Refactored into a
‘CommonPlayerTest’

«interface»
s Role
i i -7 AN Server side
Client side - method(a.b.c) =
ClientProxy |) ‘ Servant
Domain
method(a,b,c) method(a,b,c)
Demarshalls and
\l/ marshalls call dispatchs call
Requestor Marshalling Invoker
request(location, objectld, handleRequest(objectld,
operationld, arguments) operationld, byte[])
\

4

\ ‘

\ .

\| sends on network /recelves oh network
ClientRequestHandler IPC ServerRequestHandler
send(address, byte[]) byte[] receive()

N /
NN - - v
2y IPC IPC 12
Library Library

CS@AU Henrik Baerbak Christensen

15

/v

AARHUS UNIVERSITET

* |IPC purpose: Get data from client to server

We can use a test double instead!

ObjectManager objMgr = CommonCaveTests.createTestDoubledConfiguredCavel();

Invoker invoker = objMgr.getInvoker(]);

ClientRequestHandler crh = new LocalMethodCallClientRequestHandler(invoker);

Requestor reguestor = new StandardJSONRequestor(crh);

Create the cave proxy

return new CaveProxy(requestor);

d0verride
puhllc Replyﬂb]ect 5&ndTnServer{Requ95tDb]ect reqUEStDb]ect} {

lastSentRequestDb]ect reque;iﬂb]ect e

ReplyObject reply = invoker.handleRequest(requestObject.getObjectId(),
requegtﬂb]ect getﬂperatlunﬂame{} requegtﬂbject.getPayluad{}};

1astneclevedneply0b]ect reply, -

return reply;

}

Fake Object IPC

. «interface» .
e Role A
Vi i =7 N Server side
ilient side e method(a,b.c) >
ClientProxy | , | Servant
Domain
method(a,b,c) method(a,b,c)
Demarshalls and
marshalls call dispatchs call
Requestor Marshalling Invoker

request(location, objectld,
operationld, arguments)
>

|

rk

handleRequest(objectld,
op ionld, byte[])

/receives on network

4

ServerRequestHandler

send(address, byte[])

~

\\
3 IPC
Library

CS@AU Henrik Baerbak Christensen

byte[] receive()

“ //

IPc
Library

16

/v Testing at the Presentation Layer

AARHUS UNIVERSITET
« We can even move the testing to the Ul layer now
— "Automated System Testing”

dTest
public void shouldSeeProperOutputForAllCommands() {

e Lo iU SEYUETNICE Lo

e, W, a, u, back, u, p, n, Z, dig, U, aig,

'/ look, who, weather, sys, exec, n

post, read, exec, exit
String cmdList =
"Lynwho'\nweatherynsys\nnyns\ne\mw\nd\nu’\nuynp\nhynz\ndig u Another upper room\n"+
"u\ndig d NotPossible\n"+
"exec HomeCommand nullynexec BimseCommand null\ynexec HomeCommand\n"+

"exit\ng\n";

CmdInterpreter cmd = new CmdInterpreter(cave, TestConstants.MAGNUS_AARSKORT,
TestConstants.MAGNUS_PASSWORD,
ps, makeToInputStream({cmdList));

cmd. readEvalLoop();

String output = baos.toString();

system. out. printin{output);
f LOOK

assertThat(output, containsString(substring: “NORTH EAST WEST UP"));
assertThat(output, containsString(substring: "[@8] Magnus"));

CS@AU Henrik Baerbak Christensen 17

/v Compare...

AARHUS UNIVERSITET

« Comparing to a non-test-doubled architecture

— Start the database, wipe its contents, run the init script to fill in the
default tables, update the server’s config file with the proper
(ip,port) of the database, start the server, start the daemon, try to
dig a new room to the north, validate that it worked ok, ...

« Large Aarhus based company war-story
— 1.000 hours of manual test before release...

eV And that is not all...

AARHUS UNIVERSITET

« Remember the low level tests test at the storage level?
Hypothesis: Storage can Create and Read rooms
Reuse them for service tests using the real database!

aTest
puhlll: v01d shouldReadAnd[reateRoomInStorage(] -[

RoomRecord FOOH-'I = storage getRoom{pl}l}l} getPOSLtlonStrlng{)}l

assertThat(room.getDescription(), is(value: “You are standing at the end of a road before a small brick building.™});

peee = new Point3(« -1, v 0, = 9);
room = storage. getRoom{pBau I

assertThat(room.getDescriptio Run TestMongoCaveStorage
date that anbe| p o @ 12 1| E E EOR - 3 + Tests passed: 10 —15667 ms
hoolean can,&dd = storage addR p B : e
new RoomRecord(cescrip TestMongoCavesStorage (cloud.cave) 1s667ms| /usr/lib/jvm/java-1.8.0-openjdk-amd64/bin/java ...
assertThat(canAdd, is(i t o shouldGetExitSet 283 ms + Docker version should be at least 1.6.9
room = storage.getRoom(p273.g = shouldUpdatePlayerTables 150 ms v Docker environment should have more than 2GB free disk space
assertThat (room.getDescriptio shouldaddAndReadMessages 148 ms

assertThat(room.getCreator(), Process finished with exit code 0

shouldNotChangeMonExistingMessac 207 ms
shouldReadAndCreateRoominStorage 74ms
shouldNotChangeMessagelfNotCreat 1638 ms
shouldUpdateMessagelfExistingAndC 183 ms

canAdd = storage addﬁt-}om' 2?3
new RoomRecord(descrip
assertThat(canAdd, is(valug

}
shouldGetPlayerBylD 138 ms
> shouldUpdatePlayerAndPositionTable 136 ms
shouldReadPaginated 180 ms
K 9:Version Control M Terminal “ Build = 0:Messages =P & Run = 6:TODO

CS@AU Henrik Baerbak Christensen

/v Cost Benefit Analysis

AARHUS UNIVERSITET

e Costs:

— | have to program to an interface
» To have two or more implementations of the CaveStorage

— | do have to develop and maintain the ‘FakeCaveStorage’
« 12-15 methods with a lot of hashMap manipulations (260 LOC)

— Dependency Injection is required
« To control which implementation of CaveStorage to use
» Benefits
— |l am forced to program to an interface ©
— | am forced to use dependency injection @

/v Cost Benefit Analysis

AARHUS UNIVERSITET

« Benefits ...
— | have most of my code under fast test execution

— | can reuse my test cases to develop real-service code in the
service tests

eV The Ladder, not the Vaulting Pole

AARHUS UNIVERSITET

« Take small steps by
— Building test cases to ensure you do not fall

— External services/modules replaced by test doubles
» That are covered by test cases

— ... That you reuse for the real
Interaction code...

CS@AU Henrik Baerbak Christensen 22

